Analysis 2, Summer 2024 List 1 Calculations with multi-variable functions

- 37. State whether each is a "scalar" or "vector":
 - (a) temperature (e) time
 - (b) position (f) force
 - (c) voltage (g) height
 - (d) electric field

38. Re-write $\begin{cases} x = \cos(t) \\ y = t^2 \end{cases}$ as a single equation using vectors.

39. If $\vec{r} = 9\hat{j} - \hat{k}$ describes a point in 3D space, what is the z-coordinate?

40. More Analysis 1 review: Calculate...

(a)
$$(e^{5t})'$$

(b) $(\ln(8t))'$
(c) $\frac{d}{dt} [\sqrt{t^6 + \sin(\pi t)}]$
(d) $\int 2t^7 \sqrt{1 + t^8} dt$
(e) $\int_0^1 2t^7 \sqrt{1 + t^8} dt$
Simplify your answer for (b)

Simplify your answer for (b).

41. For the vector function
$$\vec{r}(t) = e^{5t}\hat{\imath} + \ln(8t)\hat{\jmath}$$
, calculate
(a) $|\vec{r}|$, also written $|\vec{r}(t)|$ (b) $\vec{r}' = \vec{r}'(t)$ (c) $|\vec{r}'|$ (d) $|\vec{r}|'$

42. Calculate both $|\vec{r}'|$ and $|\vec{r}|'$ for $\vec{r} = \begin{bmatrix} \cos 3t \\ \sin 3t \end{bmatrix}$.

43. If $f(x, y, z) = 7xy^3 \sin(x + z)$ and $x = t^2$ and $y = e^t$ and $z = t^3$, write a formula for $f(\vec{r}(t)) = f(x(t), y(t), z(t))$ using t as the only variable.

The **path integral** of $f : \mathbb{R}^n \to \mathbb{R}$ along the curve C traced by $\vec{r} : [a, b] \to \mathbb{R}^n$ is $\int_C f ds = \int_a^b f(\vec{r}(t)) |\vec{r}'(t)| dt.$

44. Calculate $\int_{a}^{b} f(\vec{r}(t)) |\vec{r}'(t)| dt$ for the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by

 $f(x,y) = x^3 + y^3$

and the curve $\vec{r}: [0,4] \to \mathbb{R}^2$ given by

$$\vec{r}(t) = x(t)\hat{\imath} + y(t)\hat{\jmath} = 2t\hat{\imath} - t\hat{\jmath}.$$

45. Integrate

$$f(x,y) = \frac{x^4}{y}$$

over the curve parameterized by

$$\vec{r}(t) = t^2 \hat{\imath} + t^{-2} \hat{\jmath}, \quad 0 \le t \le 1.$$

46. Integrate

$$f(x, y, z) = \frac{\ln(x)e^z}{\sqrt{1 + y^2 + y^2 e^{2y}}}$$

over the curve parameterized by

$$\vec{r}(t) = e^t \hat{i} + t \hat{j} + \ln(t) \hat{k}, \qquad 1 \le t \le \sqrt{23}.$$

47. Integrate $x \cos y$ over the curve $\vec{r} = [5, \sin t]$ with $0 \le t \le \pi/4$.

The partial derivative of f(x, y) with respect to x can be written as any of $f'_x(x, y) \qquad f'_x \qquad D_x f(x, y) \qquad D_x f \qquad \partial_x f \qquad \frac{\partial f}{\partial x}.$ f(x+h, y) = f(x, y)

Officially, it is defined as $\lim_{h\to 0} \frac{f(x+h, y) - f(x, y)}{h}$, but in practice it is calculated by thinking of every letter other than x as a constant.

Similarly, the partial derivative of f with respect to any one variable involves thinking of every other variable as constant.

48. Give the partial derivative of

$$f(x,y) = xy^3 + x^2\sin(xy) - 2^x$$

with respect to x, which is a new function with two inputs. We can write $f'_x(x,y)$ or f'_x or $\frac{\partial f}{\partial x}$ or $\frac{\partial}{\partial x} f$ or $\frac{\partial}{\partial x} [xy^3 + x^2 \sin(xy) - 2^x]$ for this function. It may help to think about $\frac{d}{dx} [ax + x^2 \sin(bx) - 2^x]$, where a, b, c are constants.

49. Give the partial derivative of

$$f(x,y) = xy^3 + x^2\sin(xy) - 2^x$$

with respect to y, which is a new function with two inputs. We can write $f'_y(x, y)$ or f'_y or $\frac{\partial f}{\partial y}$ or $\frac{\partial}{\partial y}f$ or $\frac{\partial}{\partial y}[xy^3 + x^2\sin(xy) - 2^x]$ for this function.

It may help to think about $\frac{d}{dt} [at^3 + b\sin(ct) - d]$, where a, b, c, d are constants.

- 50. Find the functions $\frac{\partial}{\partial x} [y^x]$ and $\frac{\partial}{\partial y} [y^x]$.
- 51. Calculate the partial derivative of $f(x,y) = y^x$ with respect to x at the point (5,2), which is a number. We can write $f'_x(5,2)$ or $\frac{\partial f}{\partial x} \Big|_{\substack{x=5\\y=2}}$ for this.

- 52. Calculate the partial derivative of $f(x, y) = y^x$ with respect to y at the point (5, 2), which is a number. We can write $f'_y(5, 2)$ or $\frac{\partial f}{\partial y}(5, 2)$ or $\frac{\partial f}{\partial y}\Big|_{\substack{x=5\\y=2}}$ for this.
- 53. Calculate f'_x and f'_y and f'_z for $f(x, y, z) = \frac{y}{x^3 + z}$.
- 54. Find each of the following partial derivatives:

(a)
$$\frac{\partial}{\partial x} [x^2 y]$$
 (d) $\frac{\partial}{\partial x} [x^y]$ (g) $\frac{\partial}{\partial z} [xyz]$ (j) $\frac{\partial}{\partial y} [x^2 \sin(xy)]$
(b) $\frac{\partial}{\partial y} [x^2 y]$ (e) $\frac{\partial}{\partial y} [x^y]$ (h) $\frac{\partial}{\partial z} [e^{xyz}]$ (k) $\frac{\partial}{\partial y} [\ln(5x)]$
(c) $\frac{\partial}{\partial x} [xyz]$ (f) $\frac{\partial}{\partial r} [\pi r^2 h]$ (i) $\frac{\partial}{\partial a} [(a^2 + b^2)]$ (ℓ) $\frac{\partial}{\partial y} \left[\frac{\cos(x+y)}{2x+5y}\right]$

55. Calculate u'_x , u'_y , v'_x and v'_y for the functions $u(x,y) = \frac{x^2}{y}$ and $v(x,y) = x - y^2$.

For a function f(x, y), the second derivative with respect to x twice is $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$ and can be written as $\frac{\partial^2 f}{\partial x^2}$ or as f''_{xx} . Similarly, the second d. with respect to y twice is $f''_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$. The mixed partial derivatives are $f''_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$ and $f''_{yx} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$.

56. Calculate f''_{xx} for $f = e^{xy}$ by calculating f'_x and then $\frac{\partial}{\partial x}(f'_x)$.

- 57. Calculate f''_{yy} for $f = y^x$ by calculating f'_y and then $\frac{\partial}{\partial y}(f'_y)$.
- 58. For $f = \frac{x}{y}$,
 - (a) Calculate f''_{xy} by calculating f'_x and then $\frac{\partial}{\partial y}(f'_x)$.
 - (b) Calculate f''_{yx} by calculating f'_{y} and then $\frac{\partial}{\partial x}(f'_{y})$.
- 59. For $g = e^{\cos(x)} + \ln(y^3)$,
 - (a) Calculate g''_{xy} by calculating g'_x and then $\frac{\partial}{\partial y}(g'_x)$.
 - (b) Calculate g''_{yx} by calculating g'_y and then $\frac{\partial}{\partial x}(g'_y)$.
- 60. Give an example of a function f(x, y) for which $f'_x = y^4$ and $f'_y = x^4$, or explain why no such f(x, y) exists.
- 61. Give all the second partial derivatives of $f(x, y) = x \ln(xy)$.