List 1

Calculations with multi-variable functions
37. State whether each is a "scalar" or "vector":
(a) temperature
(e) time
(b) position
(f) force
(c) voltage
(g) height
(d) electric field
38. Re-write $\left\{\begin{array}{l}x=\cos (t) \\ y=t^{2}\end{array}\right.$ as a single equation using vectors.
39. If $\vec{r}=9 \hat{\jmath}-\hat{k}$ describes a point in 3D space, what is the z-coordinate?
40. More Analysis 1 review: Calculate...
(a) $\left(e^{5 t}\right)^{\prime}$
(b) $(\ln (8 t))^{\prime}$
(d) $\int 2 t^{7} \sqrt{1+t^{8}} \mathrm{~d} t$
(f) $\int_{0}^{\pi / 4} \cos (t) \cos (\sin (t)) d t$
(c) $\frac{\mathrm{d}}{\mathrm{d} t}\left[\sqrt{t^{6}+\sin (\pi t)}\right]$
(e) $\int_{0}^{1} 2 t^{7} \sqrt{1+t^{8}} \mathrm{~d} t$

Simplify your answer for (b).
41. For the vector function $\vec{r}(t)=e^{5 t} \hat{\imath}+\ln (8 t) \hat{\jmath}$, calculate
(a) $|\vec{r}|$, also written $|\vec{r}(t)|$
(b) $\vec{r}^{\prime}=\vec{r}^{\prime}(t)$
(c) $\left|\vec{r}^{\prime}\right|$
(d) $|\vec{r}|^{\prime}$
42. Calculate both $\left|\vec{r}^{\prime}\right|$ and $|\vec{r}|^{\prime}$ for $\vec{r}=\left[\begin{array}{l}\cos 3 t \\ \sin 3 t\end{array}\right]$.
43. If $f(x, y, z)=7 x y^{3} \sin (x+z)$ and $x=t^{2}$ and $y=e^{t}$ and $z=t^{3}$, write a formula for $f(\vec{r}(t))=f(x(t), y(t), z(t))$ using t as the only variable.

The path integral of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ along the curve C traced by $\vec{r}:[a, b] \rightarrow \mathbb{R}^{n}$ is

$$
\int_{C} f \mathrm{~d} s=\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t
$$

44. Calculate $\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t$ for the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=x^{3}+y^{3}
$$

and the curve $\vec{r}:[0,4] \rightarrow \mathbb{R}^{2}$ given by

$$
\vec{r}(t)=x(t) \hat{\imath}+y(t) \hat{\jmath}=2 t \hat{\imath}-t \hat{\jmath} .
$$

45. Integrate

$$
f(x, y)=\frac{x^{4}}{y}
$$

over the curve parameterized by

$$
\vec{r}(t)=t^{2} \hat{\imath}+t^{-2} \hat{\jmath}, \quad 0 \leq t \leq 1 .
$$

46. Integrate

$$
f(x, y, z)=\frac{\ln (x) e^{z}}{\sqrt{1+y^{2}+y^{2} e^{2 y}}}
$$

over the curve parameterized by

$$
\vec{r}(t)=e^{t} \hat{\imath}+t \hat{\jmath}+\ln (t) \hat{k}, \quad 1 \leq t \leq \sqrt{23} .
$$

47. Integrate $x \cos y$ over the curve $\vec{r}=[5, \sin t]$ with $0 \leq t \leq \pi / 4$.

The partial derivative of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ with respect to \boldsymbol{x} can be written as any of

$$
f_{x}^{\prime}(x, y) \quad f_{x}^{\prime} \quad D_{x} f(x, y) \quad D_{x} f \quad \partial_{x} f \quad \frac{\partial f}{\partial x} .
$$

Officially, it is defined as $\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$, but in practice it is calculated by thinking of every letter other than x as a constant.

Similarly, the partial derivative of f with respect to any one variable involves thinking of every other variable as constant.
48. Give the partial derivative of

$$
f(x, y)=x y^{3}+x^{2} \sin (x y)-2^{x}
$$

with respect to x, which is a new function with two inputs. We can write $f_{x}^{\prime}(x, y)$ or f_{x}^{\prime} or $\frac{\partial f}{\partial x}$ or $\frac{\partial}{\partial x} f$ or $\frac{\partial}{\partial x}\left[x y^{3}+x^{2} \sin (x y)-2^{x}\right]$ for this function.
It may help to think about $\frac{\mathrm{d}}{\mathrm{d} x}\left[a x+x^{2} \sin (b x)-2^{x}\right]$, where a, b, c are constants.
49. Give the partial derivative of

$$
f(x, y)=x y^{3}+x^{2} \sin (x y)-2^{x}
$$

with respect to y, which is a new function with two inputs. We can write $f_{y}^{\prime}(x, y)$ or f_{y}^{\prime} or $\frac{\partial f}{\partial y}$ or $\frac{\partial}{\partial y} f$ or $\frac{\partial}{\partial y}\left[x y^{3}+x^{2} \sin (x y)-2^{x}\right]$ for this function.
It may help to think about $\frac{d}{d t}\left[a t^{3}+b \sin (c t)-d\right]$, where a, b, c, d are constants.
50. Find the functions $\frac{\partial}{\partial x}\left[y^{x}\right]$ and $\frac{\partial}{\partial y}\left[y^{x}\right]$.
51. Calculate the partial derivative of $f(x, y)=y^{x}$ with respect to x at the point $(5,2)$, which is a number. We can write $f_{x}^{\prime}(5,2)$ or $\frac{\partial f}{\partial x}(5,2)$ or $\left.\frac{\partial f}{\partial x}\right|_{\substack{x=5 \\ y=2}}$ for this.
52. Calculate the partial derivative of $f(x, y)=y^{x}$ with respect to y at the point $(5,2)$, which is a number. We can write $f_{y}^{\prime}(5,2)$ or $\frac{\partial f}{\partial y}(5,2)$ or $\left.\frac{\partial f}{\partial y}\right|_{\substack{x=5 \\ y=2}}$ for this.
53. Calculate f_{x}^{\prime} and f_{y}^{\prime} and f_{z}^{\prime} for $f(x, y, z)=\frac{y}{x^{3}+z}$.
54. Find each of the following partial derivatives:
(a) $\frac{\partial}{\partial x}\left[x^{2} y\right]$
(d) $\frac{\partial}{\partial x}\left[x^{y}\right]$
(g) $\frac{\partial}{\partial z}[x y z]$
(j) $\frac{\partial}{\partial y}\left[x^{2} \sin (x y)\right]$
(b) $\frac{\partial}{\partial y}\left[x^{2} y\right]$
(e) $\frac{\partial}{\partial y}\left[x^{y}\right]$
(h) $\frac{\partial}{\partial z}\left[e^{x y z}\right]$
(k) $\frac{\partial}{\partial y}[\ln (5 x)]$
(c) $\frac{\partial}{\partial x}[x y z]$
(f) $\frac{\partial}{\partial r}\left[\pi r^{2} h\right]$
(i) $\frac{\partial}{\partial a}\left[\left(a^{2}+b^{2}\right)\right]$
($\ell) \frac{\partial}{\partial y}\left[\frac{\cos (x+y)}{2 x+5 y}\right]$
55. Calculate $u_{x}^{\prime}, u_{y}^{\prime}, v_{x}^{\prime}$ and v_{y}^{\prime} for the functions $u(x, y)=\frac{x^{2}}{y}$ and $v(x, y)=x-y^{2}$.

For a function $f(x, y)$, the second derivative with respect to \boldsymbol{x} twice is

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)
$$

and can be written as $\frac{\partial^{2} f}{\partial x^{2}}$ or as $f_{x x}^{\prime \prime}$.
Similarly, the second d. with respect to \boldsymbol{y} twice is $f_{y y}^{\prime \prime}=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)$. The mixed partial derivatives are

$$
f_{x y}^{\prime \prime}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) \quad \text { and } \quad f_{y x}^{\prime \prime}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)
$$

56. Calculate $f_{x x}^{\prime \prime}$ for $f=e^{x y}$ by calculating f_{x}^{\prime} and then $\frac{\partial}{\partial x}\left(f_{x}^{\prime}\right)$.
57. Calculate $f_{y y}^{\prime \prime}$ for $f=y^{x}$ by calculating f_{y}^{\prime} and then $\frac{\partial}{\partial y}\left(f_{y}^{\prime}\right)$.
58. For $f=\frac{x}{y}$,
(a) Calculate $f_{x y}^{\prime \prime}$ by calculating f_{x}^{\prime} and then $\frac{\partial}{\partial y}\left(f_{x}^{\prime}\right)$.
(b) Calculate $f_{y x}^{\prime \prime}$ by calculating f_{y}^{\prime} and then $\frac{\partial}{\partial x}\left(f_{y}^{\prime}\right)$.
59. For $g=e^{\cos (x)}+\ln \left(y^{3}\right)$,
(a) Calculate $g_{x y}^{\prime \prime}$ by calculating g_{x}^{\prime} and then $\frac{\partial}{\partial y}\left(g_{x}^{\prime}\right)$.
(b) Calculate $g_{y x}^{\prime \prime}$ by calculating g_{y}^{\prime} and then $\frac{\partial}{\partial x}\left(g_{y}^{\prime}\right)$.
60. Give an example of a function $f(x, y)$ for which $f_{x}^{\prime}=y^{4}$ and $f_{y}^{\prime}=x^{4}$, or explain why no such $f(x, y)$ exists.
61. Give all the second partial derivatives of $f(x, y)=x \ln (x y)$.
